\qquad
The Fast Guide to Cartesian Coordinate Planes

Transformations:

The word transform means "to change." In geometry, a transformation changes the position of a shape on a coordinate plane. What that really means is that a shape is moving from one place to another. There are three basic transformations:

- Flip (Reflection)
- \quad Slide (Translation)
- Turn (Rotation)

The figure is the original shape or set of points, the image is the new shape or set of points.

Transformation	Explanation
Translation (Slide)	Translations take place when a shape moves in one direction from one place to another in a straight line. The figure and the image have the same size and shape. You can describe a translation as up or down or right and left. Example: when we want to say the shape gets moved $\mathbf{3 0}$ Units in the " X " direction, and $\mathbf{4 0}$ Units in the " Y " direction, we can write: $(x, y) \rightarrow(x+30, y+40)$ Which says "all the x and y coordinates will become $x+30$ and $y+40 "$

\qquad

Transformation	Explanation
Rotation (Turn)	Rotations are when a shape turns on a point away from its original position. It almost looks like a clock hand turning around the face of a clock.The distance from the center to any point on the shape stays the same. Every point makes a circle around the center. Shapes can rotate by four different angles. When it rotates by $\mathbf{9 0}^{\circ}$, it looks like it is laying on its side. When it rotates by $\mathbf{1 8 \mathbf { 8 0 } ^ { \circ }}$, it looks like it is upside down. When it rotates by $\mathbf{2 7 \mathbf { 0 } ^ { \circ }}$, it also looks like it is lying on its side. A $\mathbf{3 6 0}{ }^{\circ}$ rotation means the shape will turn all the around. A positive angle of rotation turns the figure counterclockwise, and a negative angle of rotation turns the figure in a clockwise direction.
Reflection (Flip)	A reflection takes place when a shape is flipped across a line and faces the opposite direction. Because the shape ends up facing the opposite direction, it appears to be reflected, as in a mirror. A shape can reflect across the \mathbf{y}-axis, the \mathbf{x}-axis, or across a bisector (diagonal line). Labels It is common to label each corner with letters, and to use a little dash (called a Prime) to mark each corner of the reflected image. Here the original is $\mathbf{A B C}$ and the reflected image is $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ Some Tricks Y-Axis When the mirror line is the y-axis we change each (x, y) into ($-\mathbf{x}, \mathbf{y}$)

\qquad

Rotations

Rotation notation is usually denoted \mathbf{R} (center , degrees)

- "Center" is the 'center of rotation.' This is the point around which you are performing your mathematical rotation (this can be on the figure or off the figure)
- "Degrees" stands for how many degrees you should rotate. Positive rotations are counterclockwise and negative rotations are clockwise.

Rotation	If I started in quadrant I I'II end up
in...	

Rotation by 90° about the origin
$\mathbf{R}_{\text {(origin, }} 90^{\circ}$): A rotation by 90° about the origin can be seen in the picture below in which A is rotated to its image A^{\prime}.

The general rule for a rotation by 90° about the origin is: (A,B) (-B, A)

Example:
$(-1,2)$--> $(2,1)$

Rotation by 180° about the origin

$\mathrm{R}_{\text {(origin, }} \mathbf{1 8 0}^{\circ}$): A rotation by 180° about the origin can be seen in the picture below in which A is rotated to its image A^{\prime}.

The general rule for a rotation by 180° about the origin is: (A,B) (-A, -B)

Example:

$(-2,-1)$--> $(2,1)$

Rotation by 270° about the origin

$\mathbf{R}_{\text {(origin, }} 270^{\circ}$): A rotation by 270° about the origin can be seen in the picture below in which A is rotated to its image A^{\prime}.

The general rule for a rotation by 270° about the origin is: $(A, B)(B,-A)$

Example:
(2, 1) --> (1, -2)

