The Fast Guide to Cartesian Coordinate Planes

Transformations:

The word transform means "to change." In geometry, a transformation changes the position of a shape on a coordinate plane. What that really means is that a shape is moving from one place to another. There are three basic transformations:

- Flip (Reflection)
- Slide (Translation)
- Turn (Rotation)

The **figure** is the original shape or set of points, the **image** is the new shape or set of points.

Transformation	Explanation		
Translation (Slide)	Translations take place when a shape moves in one direction from one place to another in a straight line. The figure and the image have the same size and shape. You can describe a translation as up or down or right and left.		
	Example: when we want to say the shape gets moved 30 Units in the "X" direction, and 40 Units in the "Y" direction , we can write: $(x, y) \rightarrow (x + 30, y + 40)$ Which says "all the x and y coordinates will become x+30 and y+40"		
	A A B A B A B A B A B A A A A A A		

Transformation		Explanation	
Rotation (Turn)	Rotations are when a shape turns on a point away from its original position. It almost looks like a clock hand turning around the face of a clock. The distance from the center to any point on the shape stays the same. Every point makes a circle around the center. Shapes can rotate by four different angles. When it rotates by 90° , it looks like it is laying on its side. When it rotates by 180° , it looks like it is upside down. When it rotates by 270° , it also looks like it is lying on its side. A 360° rotation means the shape will turn all the around.		
	Rotation of 90°:	$R_{90^*}(x,y) = (-y,x)$	
	Rotation of 180°:	$R_{180^{\circ}}(x, y) = (-x, -y)$ (same as point reflection in origin)	
	Rotation of 270°:	$R_{270^*}(x,y) = (y,-x)$	
Reflection (Flip)	A reflection takes place when a shape is flipped across a line and faces the opposite direction. Because the shape ends up facing the opposite direction, it appears to be reflected, as in a mirror. A shape can reflect across the y-axis , the x-axis , or across a bisector (diagonal line). Labels It is common to label each corner with letters, and to use a little dash (called a Prime) to mark each corner of the reflected image. Here the original is ABC and the reflected image is A'B'C'		
	Some Tricks		
	(-2,2) (0,5)	-Axis hen the mirror line is the x-axis e change each (x,y) into (x,-y)	
	Y-Axis When the mirror line is we change each (x,y) in		

Rotations

Rotation notation is usually denoted R(center, degrees)

- "Center" is the 'center of rotation.' This is the point around which you are performing your mathematical rotation (this can be on the figure or off the figure)
- "Degrees" stands for how many degrees you should rotate. Positive rotations are counterclockwise and negative rotations are clockwise.

Rotation	If I started in quadrant I I'll end up in
90°	Quadrant II (negative x-axis)
180°	Quadrant III (negative y-axis)
270°	Quadrant IV (positive x-axis)
306°	Quadrant I (positive y-axis)

(-1,2)

-1

-1

1

-1

-2

-2

(-2,-1)

(2,1)

2

arehouse.com

Α

2

(2,1)

1

1

thwareho

Rotation by 90° about the origin

$R_{(origin, 90^{\circ})}$: A rotation by 90° about the origin can be seen in
the picture below in which A is rotated to its image A'.

The general rule for a rotation by 90° about the origin is: (A,B) (-B, A)

Example: (-1, 2) --> (2, 1)

Rotation by 180° about the origin

 $R_{(origin, 180^{\circ})}$: A rotation by 180° about the origin can be seen in the picture below in which A is rotated to its image A'.

The general rule for a rotation by 180° about the origin is: (A,B) (-A, -B)

Example: (-2, -1) --> (2, 1)

Rotation by 270° about the origin

 $R_{(\text{origin, 270}^{\circ}):}$ A rotation by 270 $^{\circ}$ about the origin can be seen in the picture below in which A is rotated to its image A'.

The general rule for a rotation by 270° about the origin is: (A,B) (B, -A)

Example: (2, 1) --> (1, -2)

Name: _____

Date:_____